

NAMIBIA UNIVERSITY

OF SCIENCE AND TECHNOLOGY

FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of Technology: Geo-Information Technology, Bachelor of Human Resources
Management, Bachelor of Marketing, Bachelor of Transport Management, Bachelor of Business
Administration, Bachelor of Agricultural Management, Bachelor of Horticulture

QUALIFICATION CODE:
07BGIT,07BHRM,07BMAR,07BBAD,27BAGR,07BTRM,07BHOR

COURSE NAME: INTRODUCTION TO MATHEMATICS
(BUSINESS AND MANAGEMENT)

COURSE CODE: ITM111S

DATE: JULY 2022

PAPER: THEORY

DURATION: 3HOURS

MARKS: 100

SECOND OPPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER			
EXAMINER	Ms A. SAKARIA, Ms K. DAVID, Ms P. NGHISHIDIVALI, Mr N. MAFALE, Mr I. NDADI, Dr J. MWANYEKANGE		
MODERATOR:	Mr G. TAPEDZESA		

INSTRUCTIONS			
1.	Answer ALL the questions in the answer sheet.		
2.	QUESTION 1 of this question paper entail multiple choice questions		
	with options A to D. Write down the letter corresponding to the best		
	option for each question.		
3.	For QUESTION 2 indicate whether the given mathematical statements		
	are true (T) or false (F).		
4.	QUESTION 3 show clearly all the steps used in the calculations.		

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 4 PAGES (Including this front page)

QUESTION 1 [30 MARKS]

Write down the letter corresponding to the best option for each question in the answer booklet/sheet provided.

1.1 Evaluate:
$$63 - (-3)(-2 - 8 - 4) \div [3(5 + (-2)(-1))]$$
. [3]

A. 65

B. 60

- C. -60
- D. 61

1.2 Express
$$8\frac{2}{7}\%$$
 as a fraction.

[3]

- A. $\frac{58}{7}$

- c. $\frac{29}{350}$
- D. $\frac{7}{58}$
- 1.3 Find the Lowest Common Multiple (LCM) of the numbers 15,25,40 and 75.
- [3]

- A. 900
- B. 400
- C. 600
- D. 9800

1.4 Simplify
$$\left(\frac{1}{4}\right)^{-\frac{1}{2}}$$
.

[3]

A. $\frac{1}{2}$

- B. 2
- $C. \sqrt{2}$

D. $\frac{1}{16}$

1.5 Given vector
$$A = \begin{pmatrix} -2 & 9 \end{pmatrix}$$
, find $2A$.

[3]

- A. (-4 -9) B. (4 18) C. (-4 18) D. (-18 -4)
- 1.6 The roots of the quadratic equation $x^2 3x + 2 = 0$ are:

[3]

- A. 1, -2
- B. -1, -2 C. -1, 2
- D. 1,2
- 1.7 Express the statement "5 more than the product of 3 and a number" in terms if x. [3]
 - A. 5x 3
- B. 3x+5 C. 3-5x

D. 3x(5)

1.8 Factorize the expression $2ab^2 - abd - 2bc + cd$

[3]

- A. (2b-d)(ab-c) B. (ab-c)(ab-c) C. (2b-d)(ab+c) D. (2b+d)(ab-c)

1.9 If
$$P = \{0,1,2.3,4\}$$
, $Q = \{4,6,8\}$ and $R = \{6,12,18\}$, find $(P \cap Q) \cup (Q \cap R)$. [3]

A.
$$\{1,2,3,4,6,8\}$$
 B. $\{4,6,8\}$ C. $\{4,6\}$

C.
$$\{4,6\}$$

1.10 Determine the sum of the series
$$\sum_{n=1}^{5} (1+n)$$
. [3]

D. 25

[2]

QUESTION 2 [10 MARKS]

Indicate whether the given mathematical statements are true (T) or false (F)

2.1 The number
$$0.51 \times 10^{-3}$$
 is in standard form.

2.2 The expression
$$(x+2)^3$$
 simplifies to x^3+2^3 . [2]

$$2.3 \log_5 4 = \frac{\log_{10} 4}{\log_{10} 5}$$
 [2]

2.4 The discriminant of the equation
$$2x^2 - 4x + 9 = 0$$
 is negative. [2]

2.5 If A and B are both
$$2 \times 3$$
 matrices then, we can calculate AB .

QUESTION 3 [60 MARKS] (Clearly show all your work)

3.1 Let $S = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$, $A = \{1, 3, 5, 6, 7\}$, $B = \{1, 5, 8, 9\}$, $C = \{2, 4, 5, 6, 9\}$ Find:

3.1.1
$$A^c \cup B$$
 [4]

3.1.2
$$(B^c \cup C) \cap A$$
 [6]

3.2 Let
$$A = \begin{pmatrix} -2 & 3 \\ 4 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} -3 & -1 \\ 1 & 0 \end{pmatrix}$ be two matrices.

3.2.1 Determine the matrix
$$A^2$$
. [4]

3.2.2 Find
$$A - \frac{1}{3}B$$
 [6]

3.2.3 Find
$$(AB)^{-1}$$
 [6]

Find the values of the letters, x, y, r and t if: 3.3

3.4	If $x+2;3x-1$; and $4x-3$ are the first three terms of an arithmetic progression(A)	(P):
3.4.1	Determine the value of x .	[4]
3.4.2	Write numerical values of the first three terms.	[3]
3.4.3	If the nth term is -41, calculate the value of n.	[4]
3.5	Of the students in class, 15 can spell the word 'Parallel' (Pa), 14 can spell 'Pythagoras' (Py), 5 can spell both words and 4 can spell neither.	
3.5.1	Draw a Venn diagram to show the information above.	[5]
3.5.2	How many students are there in the class?	[2]
3.5.3	How many students can spell Parallel or Pythagoras?	[2]
3.5.4	How many students can spell exactly one of the two words?	[2]
3.6	Calculate the maturity value of an investment of N680000\mathrm{due}$ in 7 years when	
	the annual simple interest rate is 9.5 %.	[4]

[8]

 $\begin{pmatrix} -2x & y \\ 2r & 3t \end{pmatrix} - 3 \begin{pmatrix} y & 2 \\ x & 6 \end{pmatrix} = \begin{pmatrix} 12 & 24 \\ -9 & 12 \end{pmatrix}$

END OF EXAMINATION QUESTION PAPER